# 概率论的基础
## Learning outcomes
- Define a random variable, an outcome, and an event
- Identify the two defining properties of probability, including mutually exclusive and exhaustive events
- Compare and contrast empirical, subjective, and a priori probabilities
- Describe the probability of an event in terms of odds for and against the event
- Calculate and interpret conditional probabilities
- Demonstrate the application of the multiplication and addition rules for probability
- Compare and contrast dependent and independent events
- Calculate and interpret an unconditional probability using the total probability rule
- Identify the most appropriate method to solve a particular counting problem
- Analyze counting problems using factorial, combination, and permutation concepts
## 相关术语
### 随机变量(Random Variable)
- A random variable is a quantity whose future outcomes are uncertain.
### 结果(Outcomes)
- An outcome is a possible value of a random variable.
### 事件(Events)
- An event is a specified set of outcomes.
## 事件之间的关系
### 互斥事件(Mutually Exclusive Events)
- Two events are mutually exclusive if they cannot occur at the same time.
### 遍历事件(Exhaustive Events)
- A set of events is exhaustive if one of the events must occur.
### 独立事件(Independent Events)
- Two events are independent if the occurrence of one event does not affect the occurrence of the other event.
## 概率的定义与确定方法
### 概率的定义
- 任意事件E的概率必须在0和1之间,即0 ≤ P(E) ≤ 1。
- 一组互斥且遍历事件的概率之和等于1:$\sum_{i=1}^{n} P(E_i) = 1$。
### 概率的确定方法
- 经验概率(Empirical Probability)
- 通过历史数据来估算事件未来发生的概率。
- 先验概率(Priori Probability)
- 通过逻辑分析而不是历史数据或主观判断来确定事件发生的概率。
- 主观概率(Subjective Probability)
- 依据个人主观判断来确定事件发生的概率。
### 赔率(Odds)
- 公式:$\text{Odds} = \frac{P(E)}{1 - P(E)}$
### 条件概率
- 在已知某事件B发生的条件下,事件A发生的概率,记为$P(A|B)$。
## 概率的计算
### 乘法法则(Multiplication Rule)
### 加法法则(Addition Rule)
### 全概率公式(Total Probability Formula)
- 公式:$P(A) = \sum_{i=1}^{n} P(A|B_i) \times P(B_i)$
- 其中,事件$B_i$是一组互斥且遍历事件。
### 贝叶斯公式(Bayes' Formula)
- 公式:$P(B|A) = \frac{P(A|B) \times P(B)}{P(A)}$
## 随机变量的统计量
### 期望值(Expected Value)
- 定义:随机变量的期望值是该随机变量的所有可能取值的加权平均值。
- 性质1:对任意常数c,$E(cX) = cE(X)$
- 性质2:对于资产组合来说,资产组合收益率的期望等于组合中每个资产收益率的加权平均值。
- 公式:$E(R_p) = \sum_{i=1}^{n} w_i \times E(R_i)$
- $w_i$:资产i的权重
### 方差(Variance)
### 标准差(Standard Deviation)
### 协方差(Covariance)
### 相关系数(Correlation Coefficient)
## 排列组合
### 组合(Combination)
- 阶乘(Factorial):$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$
- 多项式公式(Multinoial Formula):$C(n, r) = \frac{n!}{n_1! \times n_2! \times \cdots \times n_k!}$
- 其中,$n_1 + n_2 + \cdots + n_k = n$
- 组合公式(Combination Formula):$C(n, r) = \frac{n!}{r! \times (n-r)!}$
- 例如10只股票中选出4只股票给予买入评级,共有$C_{10}^4 = \frac{10!}{4! \times 6!} = 210$种可能。
### 排列(Permutation)
- 与组合的区别:排列考虑顺序,组合不考虑顺序。
- 公式:$P(n, r) = \frac{n!}{(n-r)!}$
- 例如10只股票中选出4只股票给予买入评级,共有$P_{10}^4 = \frac{10!}{6!} = 5040$种可能。